Optimal Existence and Uniqueness Theory for the Fractional Heat Equation
نویسندگان
چکیده
We construct a theory of existence, uniqueness and regularity of solutions for the fractional heat equation ∂tu + (−∆) s u = 0, 0 < s < 1, posed in the whole space R with data in a class of locally bounded Radon measures that are allowed to grow at infinity with an optimal growth rate. We consider a class of nonnegative weak solutions and prove that there is an equivalence between nonnegative data and solutions, which is given in one direction by the representation formula, in the other one by the initial trace. We review many of the typical properties of the solutions, in particular we prove optimal pointwise estimates and new Harnack inequalities.
منابع مشابه
Regularized fractional derivatives in Colombeau algebra
The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...
متن کاملExistence/uniqueness of solutions to Heat equation in extended Colombeau algebra
This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کاملExistence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra
In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.
متن کاملExistence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem
In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0
متن کامل